• Medientyp: E-Artikel; Elektronischer Konferenzbericht; Sonstige Veröffentlichung
  • Titel: Parameterised Counting in Logspace
  • Beteiligte: Haak, Anselm [VerfasserIn]; Meier, Arne [VerfasserIn]; Prakash, Om [VerfasserIn]; Rao B. V., Raghavendra [VerfasserIn]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.STACS.2021.40
  • Schlagwörter: Parameterized Complexity ; Counting Complexity ; Logspace
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Logarithmic space bounded complexity classes such as L and NL play a central role in space bounded computation. The study of counting versions of these complexity classes have lead to several interesting insights into the structure of computational problems such as computing the determinant and counting paths in directed acyclic graphs. Though parameterised complexity theory was initiated roughly three decades ago by Downey and Fellows, a satisfactory study of parameterised logarithmic space bounded computation was developed only in the last decade by Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015). In this paper, we introduce a new framework for parameterised counting in logspace, inspired by the parameterised space bounded models developed by Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015). They defined the operators para_W and para_β for parameterised space complexity classes by allowing bounded nondeterminism with multiple-read and read-once access, respectively. Using these operators, they characterised the parameterised complexity of natural problems on graphs. In the spirit of the operators para_W and para_β by Stockhusen and Tantau, we introduce variants based on tail-nondeterminism, para_{W[1]} and para_{βtail}. Then, we consider counting versions of all four operators applied to logspace and obtain several natural complete problems for the resulting classes: counting of paths in digraphs, counting first-order models for formulas, and counting graph homomorphisms. Furthermore, we show that the complexity of a parameterised variant of the determinant function for (0,1)-matrices is #para_{βtail} L-hard and can be written as the difference of two functions in #para_{βtail} L. These problems exhibit the richness of the introduced counting classes. Our results further indicate interesting structural characteristics of these classes. For example, we show that the closure of #para_{βtail} L under parameterised logspace parsimonious reductions coincides with #para_β L, that is, ...
  • Zugangsstatus: Freier Zugang