• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: Moderate Dimension Reduction for k-Center Clustering
  • Beteiligte: Jiang, Shaofeng H.-C. [Verfasser:in]; Krauthgamer, Robert [Verfasser:in]; Sapir, Shay [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.SoCG.2024.64
  • Schlagwörter: clustering ; dimension reduction ; streaming algorithms ; Johnson-Lindenstrauss transform
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: The Johnson-Lindenstrauss (JL) Lemma introduced the concept of dimension reduction via a random linear map, which has become a fundamental technique in many computational settings. For a set of n points in ℝ^d and any fixed ε > 0, it reduces the dimension d to O(log n) while preserving, with high probability, all the pairwise Euclidean distances within factor 1+ε. Perhaps surprisingly, the target dimension can be lower if one only wishes to preserve the optimal value of a certain problem on the pointset, e.g., Euclidean max-cut or k-means. However, for some notorious problems, like diameter (aka furthest pair), dimension reduction via the JL map to below O(log n) does not preserve the optimal value within factor 1+ε. We propose to focus on another regime, of moderate dimension reduction, where a problem’s value is preserved within factor α > 1 using target dimension (log n)/poly(α). We establish the viability of this approach and show that the famous k-center problem is α-approximated when reducing to dimension O({log n}/α² + log k). Along the way, we address the diameter problem via the special case k = 1. Our result extends to several important variants of k-center (with outliers, capacities, or fairness constraints), and the bound improves further with the input’s doubling dimension. While our poly(α)-factor improvement in the dimension may seem small, it actually has significant implications for streaming algorithms, and easily yields an algorithm for k-center in dynamic geometric streams, that achieves O(α)-approximation using space poly(kdn^{1/α²}). This is the first algorithm to beat O(n) space in high dimension d, as all previous algorithms require space at least exp(d). Furthermore, it extends to the k-center variants mentioned above.
  • Zugangsstatus: Freier Zugang