• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: Algorithms for Halfplane Coverage and Related Problems
  • Beteiligte: Wang, Haitao [Verfasser:in]; Xue, Jie [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.SoCG.2024.79
  • Schlagwörter: circular coverage ; ε-kernels ; halfplane coverage ; star-shaped polygon coverage
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Given in the plane a set of points and a set of halfplanes, we consider the problem of computing a smallest subset of halfplanes whose union covers all points. In this paper, we present an O(n^{4/3}log^{5/3}nlog^{O(1)}log n)-time algorithm for the problem, where n is the total number of all points and halfplanes. This improves the previously best algorithm of n^{10/3}2^{O(log^*n)} time by roughly a quadratic factor. For the special case where all halfplanes are lower ones, our algorithm runs in O(nlog n) time, which improves the previously best algorithm of n^{4/3}2^{O(log^*n)} time and matches an Ω(nlog n) lower bound. Further, our techniques can be extended to solve a star-shaped polygon coverage problem in O(nlog n) time, which in turn leads to an O(nlog n)-time algorithm for computing an instance-optimal ε-kernel of a set of n points in the plane. Agarwal and Har-Peled presented an O(nklog n)-time algorithm for this problem in SoCG 2023, where k is the size of the ε-kernel; they also raised an open question whether the problem can be solved in O(nlog n) time. Our result thus answers the open question affirmatively.
  • Zugangsstatus: Freier Zugang