• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: Understanding PPA-Completeness
  • Beteiligte: Deng, Xiaotie [Verfasser:in]; Edmonds, Jack R. [Verfasser:in]; Feng, Zhe [Verfasser:in]; Liu, Zhengyang [Verfasser:in]; Qi, Qi [Verfasser:in]; Xu, Zeying [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.CCC.2016.23
  • Schlagwörter: PPA-Completeness ; Fixed Point Computation
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: We consider the problem of finding a fully colored base triangle on the 2-dimensional Möbius band under the standard boundary condition, proving it to be PPA-complete. The proof is based on a construction for the DPZP problem, that of finding a zero point under a discrete version of continuity condition. It further derives PPA-completeness for versions on the Möbius band of other related discrete fixed point type problems, and a special version of the Tucker problem, finding an edge such that if the value of one end vertex is x, the other is -x, given a special anti-symmetry boundary condition. More generally, this applies to other non-orientable spaces, including the projective plane and the Klein bottle. However, since those models have a closed boundary, we rely on a version of the PPA that states it as to find another fixed point giving a fixed point. This model also makes it presentationally simple for an extension to a high dimensional discrete fixed point problem on a non-orientable (nearly) hyper-grid with a constant side length.
  • Zugangsstatus: Freier Zugang