Jansen, Klaus
[Verfasser:in];
Klein, Kim-Manuel
[Verfasser:in];
Verschae, José
[Verfasser:in]
;
Klaus Jansen and Kim-Manuel Klein and José Verschae
[Mitwirkende:r]
Closing the Gap for Makespan Scheduling via Sparsification Techniques
Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
Makespan scheduling on identical machines is one of the most basic and fundamental packing problem studied in the discrete optimization literature. It asks for an assignment of n jobs to a set of m identical machines that minimizes the makespan. The problem is strongly NPhard, and thus we do not expect a (1 + epsilon)-approximation algorithm with a running time that depends polynomially on 1/epsilon. Furthermore, Chen et al. [Chen/JansenZhang, SODA'13] recently showed that a running time of 2^{1/epsilon}^{1-delta} + poly(n) for any delta > 0 would imply that the Exponential Time Hypothesis (ETH) fails. A long sequence of algorithms have been developed that try to obtain low dependencies on 1/epsilon, the better of which achieves a running time of 2^{~O(1/epsilon^{2})} + O(n*log(n)) [Jansen, SIAM J. Disc. Math. 2010]. In this paper we obtain an algorithm with a running time of 2^{~O(1/epsilon)} + O(n*log(n)), which is tight under ETH up to logarithmic factors on the exponent. Our main technical contribution is a new structural result on the configuration-IP. More precisely, we show the existence of a highly symmetric and sparse optimal solution, in which all but a constant number of machines are assigned a configuration with small support. This structure can then be exploited by integer programming techniques and enumeration. We believe that our structural result is of independent interest and should find applications to other settings. In particular, we show how the structure can be applied to the minimum makespan problem on related machines and to a larger class of objective functions on parallel machines. For all these cases we obtain an efficient PTAS with running time 2^{~O(1/epsilon)} + poly(n).