• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation
  • Beteiligte: Borassi, Michele [Verfasser:in]; Natale, Emanuele [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.ESA.2016.20
  • Schlagwörter: shortest path algorithm ; network analysis ; Betweenness centrality ; graph mining ; sampling
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: We present KADABRA, a new algorithm to approximate betweenness centrality in directed and undirected graphs, which significantly outperforms all previous approaches on real-world complex networks. The efficiency of the new algorithm relies on two new theoretical contributions, of independent interest. The first contribution focuses on sampling shortest paths, a subroutine used by most algorithms that approximate betweenness centrality. We show that, on realistic random graph models, we can perform this task in time |E|^{1/2+o(1)} with high probability, obtaining a significant speedup with respect to the Theta(|E|) worst-case performance. We experimentally show that this new technique achieves similar speedups on real-world complex networks, as well. The second contribution is a new rigorous application of the adaptive sampling technique. This approach decreases the total number of shortest paths that need to be sampled to compute all betweenness centralities with a given absolute error, and it also handles more general problems, such as computing the k most central nodes. Furthermore, our analysis is general, and it might be extended to other settings, as well.
  • Zugangsstatus: Freier Zugang