• Medientyp: E-Artikel; Sonstige Veröffentlichung; Elektronischer Konferenzbericht
  • Titel: A Quasi-Polynomial-Time Approximation Scheme for Vehicle Routing on Planar and Bounded-Genus Graphs
  • Beteiligte: Becker, Amariah [Verfasser:in]; Klein, Philip N. [Verfasser:in]; Saulpic, David [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.ESA.2017.12
  • Schlagwörter: Planar Graphs ; Capacitated Vehicle Routing ; Approximation Algorithms
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: The Capacitated Vehicle Routing problem is a generalization of the Traveling Salesman problem in which a set of clients must be visited by a collection of capacitated tours. Each tour can visit at most Q clients and must start and end at a specified depot. We present the first approximation scheme for Capacitated Vehicle Routing for non-Euclidean metrics. Specifically we give a quasi-polynomial-time approximation scheme for Capacitated Vehicle Routing with fixed capacities on planar graphs. We also show how this result can be extended to bounded-genus graphs and polylogarithmic capacities, as well as to variations of the problem that include multiple depots and charging penalties for unvisited clients.
  • Zugangsstatus: Freier Zugang