• Medientyp: E-Artikel
  • Titel: From quantum curves to topological string partition functions
  • Beteiligte: Coman-Lohi, Ioana [Verfasser:in]; Pomoni, Elli [Verfasser:in]; Teschner, Joerg [Verfasser:in]
  • Erschienen: Springer, 2022
  • Erschienen in: Communications in mathematical physics 399(3), 1501 - 1548 (2022). doi:10.1007/s00220-022-04579-4
  • Sprache: Englisch
  • DOI: https://doi.org/10.1007/s00220-022-04579-4; https://doi.org/10.3204/PUBDB-2022-07185
  • ISSN: 0010-3616
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: This paper describes the reconstruction of the topological string partition function for certain local Calabi-Yau (CY) manifolds from the quantum curve, an ordinary differential equation obtained by quantising their defining equations. Quantum curves are characterised as solutions to a Riemann-Hilbert problem. The isomonodromic tau-functions associated to these Riemann-Hilbert problems admit a family of natural normalisations labelled by topological types of the Fenchel-Nielsen networks used in the Abelianisation of flat connections. To each chamber in the extended K\'ahler moduli space of the local CY under consideration there corresponds a unique topological type. The corresponding isomonodromic tau-functions admit a series expansion of generalised theta series type from which one can extract the topological string partition functions for each chamber.
  • Zugangsstatus: Freier Zugang