> Detailanzeige
Sherratt, Katharine
[Verfasser:in];
Gruson, Hugo
[Verfasser:in];
Ullrich, Alexander
[Verfasser:in];
Porebski, Przemyslaw
[Verfasser:in];
Venkatramanan, Srinivasan
[Verfasser:in];
Bartczuk, Rafal P
[Verfasser:in];
Dreger, Filip
[Verfasser:in];
Gambin, Anna
[Verfasser:in];
Gogolewski, Krzysztof
[Verfasser:in];
Gruziel-Slomka, Magdalena
[Verfasser:in];
Krupa, Bartosz
[Verfasser:in];
Moszyński, Antoni
[Verfasser:in];
Niedzielewski, Karol
[Verfasser:in];
Gibson, Graham
[Verfasser:in];
Nowosielski, Jedrzej
[Verfasser:in];
Radwan, Maciej
[Verfasser:in];
Rakowski, Franciszek
[Verfasser:in];
Semeniuk, Marcin
[Verfasser:in];
Szczurek, Ewa
[Verfasser:in];
Zielinski, Jakub
[Verfasser:in];
Kisielewski, Jan
[Verfasser:in];
Pabjan, Barbara
[Verfasser:in];
Holger, Kirsten
[Verfasser:in];
Kheifetz, Yuri
[Verfasser:in];
[...]
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Teilen
Literatur-
verwaltung
Direktlink
Zur
Merkliste
Lösche von
Merkliste
Per Email teilen
Auf Twitter teilen
Auf Facebook teilen
Per Whatsapp teilen
- Medientyp: E-Artikel
- Titel: Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
- Beteiligte: Sherratt, Katharine [Verfasser:in]; Gruson, Hugo [Verfasser:in]; Ullrich, Alexander [Verfasser:in]; Porebski, Przemyslaw [Verfasser:in]; Venkatramanan, Srinivasan [Verfasser:in]; Bartczuk, Rafal P [Verfasser:in]; Dreger, Filip [Verfasser:in]; Gambin, Anna [Verfasser:in]; Gogolewski, Krzysztof [Verfasser:in]; Gruziel-Slomka, Magdalena [Verfasser:in]; Krupa, Bartosz [Verfasser:in]; Moszyński, Antoni [Verfasser:in]; Niedzielewski, Karol [Verfasser:in]; Gibson, Graham [Verfasser:in]; Nowosielski, Jedrzej [Verfasser:in]; Radwan, Maciej [Verfasser:in]; Rakowski, Franciszek [Verfasser:in]; Semeniuk, Marcin [Verfasser:in]; Szczurek, Ewa [Verfasser:in]; Zielinski, Jakub [Verfasser:in]; Kisielewski, Jan [Verfasser:in]; Pabjan, Barbara [Verfasser:in]; Holger, Kirsten [Verfasser:in]; Kheifetz, Yuri [Verfasser:in]; [...]
-
Erschienen:
eLife Sciences Publications, 2023
- Erschienen in: eLife 12, e81916 (2023). doi:10.7554/eLife.81916
- Sprache: Englisch
- DOI: https://doi.org/10.7554/eLife.81916; https://doi.org/10.34734/FZJ-2023-02606
- ISSN: 2050-084X
- Entstehung:
-
Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
- Beschreibung: Background:Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.Methods:We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.Results:Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident ...
- Zugangsstatus: Freier Zugang