• Medientyp: E-Book
  • Titel: Correlated electrons : from models to materials
  • Beteiligte: Koch, Erik [Verfasser:in]; Anders, Frithjof [Verfasser:in]; Jarrell, Mark (Eds. ) [Verfasser:in]
  • Erschienen: Forschungszentrum Jülich GmbH Zenralbibliothek, Verlag, 2012
  • Erschienen in: Jülich : Forschungszentrum Jülich GmbH Zenralbibliothek, Verlag, Schriften des Forschungszentrums Jülich. Reihe modeling and simulation 2, getr. Paginierung (2012).
  • Sprache: Englisch
  • ISBN: 978-3-89336-796-2
  • ISSN: 2192-8525
  • Schlagwörter: DMFT ; correlated electrons ; electronic structure theory ; LDA
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Density-functional theory (DFT) is considered the Standard Model of solid-state physics. The state-of-the-art approximations to DFT, the local-density approximation (LDA) or its simple extensions, fail, however, even qualitatively, for strongly-correlated systems. When correlations are strong, electrons become entangled and novel properties emerge. Mott-transitions, Kondo- and heavy-fermion behavior, non-conventional superconductivity and orbital-order are just some examples of this emergent behavior. The realistic description of emergent properties is one of the grand-challenges of modern condensed-matter physics. To understand this physics beyond the Standard Model, nonperturbative many-body techniques are essential. Still, DFT-based methods are needed to devise materials-specific Hamiltonians for strong correlations. Mastering these novel techniques requires a vast background, ranging from DFT to model building and many-body physics. The aim of this school is to introduce advanced graduate students and up to the modern methods for modeling emergent properties of correlated electrons and to explore the relation of electron correlations with quantum entanglement and concepts from quantum information. A school of this size and scope requires support and help from many sources. We are very grateful for all the financial and practical support we have received. The Institute for Advanced Simulation and the German Research School for Simulation Sciences at the Forschungszentrum Jülich provided the funding and were vital for the organization of the school and the production of this book. The DFG Forschergruppe FOR1346 offered travel grants for students and the Institute for Complex Adaptive Matter (ICAM) travel support for international speakers and participants. The nature of a school makes it desirable to have the lecture-notes available already during the lectures. In this way the participants get the chance to work through the lectures thoroughly while they are given. We are therefore extremely grateful to the ...
  • Zugangsstatus: Freier Zugang