Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
Quantum devices are preparing increasingly more complex entangled quantum states. How can one effectively study these states in light of their increasing dimensions? Phase spaces such as Wigner functions provide a suitable framework. We focus on spherical phase spaces for finite-dimensional quantum states of single qudits or permutationally symmetric states of multiple qubits. We present methods to efficiently compute the correspond- ing spherical phase-space functions which are at least an order of magnitude faster than traditional methods. Quantum many-body states in much larger dimensions can now be effectively studied by experimentalists and theorists using spherical phase-space techniques.