• Medientyp: E-Artikel
  • Titel: The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future
  • Beteiligte: Tiso, Till [Verfasser:in]; Winter, Benedikt [Verfasser:in]; Blank, Lars M. [Verfasser:in]; Wei, Ren [Verfasser:in]; Hee, Johann [Verfasser:in]; de Witt, Jan [Verfasser:in]; Wierckx, Nick [Verfasser:in]; Quicker, Peter [Verfasser:in]; Bornscheuer, Uwe T. [Verfasser:in]; Bardow, André [Verfasser:in]; Nogales, Juan [Verfasser:in]
  • Erschienen: Academic Press, 2022
  • Erschienen in: Metabolic engineering 71, 77-98 (2022). doi:10.1016/j.ymben.2021.12.006
  • Sprache: Englisch
  • DOI: https://doi.org/10.1016/j.ymben.2021.12.006
  • ISSN: 1096-7184; 1096-7176
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: The plastic crisis requires drastic measures, especially for the plastics’ end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
  • Zugangsstatus: Freier Zugang