• Medientyp: E-Artikel
  • Titel: The complex provenance of Cu-binding ligands in the South-East Atlantic
  • Beteiligte: Zitoun, R. [VerfasserIn]; Achterberg, Eric P. [VerfasserIn]; Browning, Thomas J. [VerfasserIn]; Hoffmann, Linn J. [VerfasserIn]; Krisch, Stephan [VerfasserIn]; Sander, Sylvia G. [VerfasserIn]; Koschinsky, A. [VerfasserIn]
  • Erschienen: Elsevier, 2021-12-20
  • Sprache: Englisch
  • DOI: https://doi.org/10.1016/j.marchem.2021.104047
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Highlights • Cu speciation was investigated for the first time in the South-East Atlantic using CLE-AdCSV. • [Cu2+] were mostly below the putative biolimiting threshold of various marine microorganisms. • Cu speciation parameters showed a poor correlation with assessed biogeochemical parameters. • Spatial differences in Cu speciation parameters suggest that biogeochemical processes and sources strongly influence Cu speciation. Organic ligands play a key role in the marine biogeochemical cycle of copper (Cu), a bio-essential element, regulating its solubility and bioavailability. However, the sources, abundance, and distribution of these ligands are still poorly understood. In this study, we examined vertical Cu speciation profiles from the South-East Atlantic (GEOTRACES section GA08). Profiles were collected from a range of ocean conditions, including the Benguela upwelling region, the oligotrophic South Atlantic Gyre, and the Congo River outflow. In general, the lack of a significant correlation between most of the parameters assessed here with Cu speciation data obscures the provenance of Cu-binding ligands, suggesting that Cu speciation in the South-East Atlantic is influenced by a complex interplay between biotic and abiotic processes. Nevertheless, the total dissolved Cu (CuT) illustrated an allochthonous origin in the working area, while Cu-binding ligands showed both an allochthonous and a biogenic, autochthonous origin. Pigment concentrations showed that the phylogeography of different microorganisms influenced the spatial features of the Cu-binding ligand pool in the South-East Atlantic. Allochthonous Cu-binding ligand sources in the upper water column are likely associated with dissolved organic matter which originated from the Congo River and the Benguela upwelling system. Deep water ligand sources could include refractory dissolved organic carbon (DOC), resuspended benthic inputs, and lateral advected inputs from the shelf margin. The degradation of L1-type ligands and/or siderophores in low oxygen ...
  • Zugangsstatus: Freier Zugang