• Medientyp: Sonstige Veröffentlichung; Elektronische Hochschulschrift; E-Book
  • Titel: Algorithmes et structures de données parallèles pour applications interactives ; Parallel algorithms and data structures for interactive data problems
  • Beteiligte: Toss, Julio [Verfasser:in]
  • Erschienen: theses.fr, 2017-10-26
  • Sprache: Englisch
  • Schlagwörter: Stream processing ; Traitement de flux de données ; Physics-Based simulation ; Simulation physique ; Localité de données ; Parallel processing ; Traitement en temps réel ; Data locality ; Real-Time processing ; Algorithmes parallèles
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: La quête de performance a été une constante à travers l'histoire des systèmes informatiques.Il y a plus d'une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d'épuisement pour satisfaire les exigences de performance.Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes.Avec l'adoption généralisée d'ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s'adapter à ces nouvelles architectures.Cependant, dans des applications non conventionnelles, avec des exigences d'interactivité et de temps réel, la parallélisation efficace est encore un défi majeur.L'exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l'entrée de l'utilisateur dans une itération de calcul de la boucle de simulation.Le même type de contrainte apparaît dans les applications d'analyse de données en continu.Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d'analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé.La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache.Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l'indexation statique des données ne conduisent pas aux performances souhaitées.Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes: la première dans le domaine de la simulation physique interactive et la seconde sur l'analyse des données en continu.Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts ...
  • Zugangsstatus: Freier Zugang