Modélisation, analyse et classification de motifs structuraux d'ARN à partir de leur contexte, par des méthodes d'algorithmique de graphes ; Modeling, analysis and classification of RNA structural motifs from their context, using graph algorithmic methods
Titel:
Modélisation, analyse et classification de motifs structuraux d'ARN à partir de leur contexte, par des méthodes d'algorithmique de graphes ; Modeling, analysis and classification of RNA structural motifs from their context, using graph algorithmic methods
Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
Dans cette thèse, nous étudions le contexte structural de motifs structuraux d'ARN dans le but de progresser vers leur prédiction. En effet, certains motifs d'ARN, sous-structures apparaissant de façon récurrente dans les structures d'ARN, restent difficiles à prédire, en raison de la présence d'interactions non canoniques dans ces motifs, et en raison de la distance sur la séquence primaire séparant les différentes parties de ces motifs. Nous modélisons ainsi par des graphes le contexte structural topologique de ces motifs, et comparons les contextes des différentes occurrences en utilisant plusieurs algorithmes de graphes. Nous classifions ensuite les occurrences de motif selon leurs similarités de contexte topologique et selon leurs similarités de contexte 3D, à l'aide d'un algorithme de clustering recouvrant.Dans un premier temps, nous montrons sur un jeu de données de trois motifs structuraux que les similarités observées entre les contextes topologiques sont cohérentes avec les similarités entre les contextes 3D. Cela indique que le contexte topologique peut être suffisant pour déterminer le contexte 3D pour ces trois motifs.Dans un deuxième temps, nous étudions plusieurs classifications d'occurrences du motif A-minor, selon des similarités de contexte 3D. Nous y observons que des similarités de contexte 3D existent entre occurrences non homologues, ce qui pourrait être le signe d'un phénomène de convergence évolutive. De plus, nous observons que certaines parties du contexte 3D semblent mieux conservées que d'autres entre occurrences non homologues.Dans un troisième temps, nous étudions la capacité de prédiction du contexte topologique commun à des occurrences de motif A-minor, partageant des contextes 3D similaires, ainsi que la capacité de prédiction d'un signal de séquence sur ces mêmes occurrences. Pour cela, nous étudions la fréquence d'apparition de cette topologie et de ces séquences dans des structures d'ARN en l'absence de motifs A-minor. Nous en concluons que la topologie et la séquence ...