• Medientyp: E-Artikel
  • Titel: Growth and design strategies of organic dendritic networks
  • Beteiligte: Ciccone, Giuseppe [VerfasserIn]; Cucchi, Matteo [VerfasserIn]; Gao, Yanfei [VerfasserIn]; Kumar, Ankush [VerfasserIn]; Seifert, Lennart Maximilian [VerfasserIn]; Weissbach, Anton [VerfasserIn]; Tseng, Hsin [VerfasserIn]; Kleemann, Hans [VerfasserIn]; Alibart, Fabien [VerfasserIn]; Leo, Karl [VerfasserIn]
  • Erschienen: Cham : Springer International Publishing, [2024]
  • Sprache: Englisch
  • DOI: 10.1007/s43939-022-00028-0
  • Schlagwörter: Technik ; growth and design strategies ; Wachstums- und Designstrategien ; dendritic polymer fibers ; Gehirn-inspirierte Berechnung ; organische dendritische Netzwerke ; organic dendritic networks ; neuromorphic features ; braininspired computation ; technology ; neuromorphe Merkmale ; dendritische Polymerfasern
  • Entstehung:
  • Anmerkungen: Hinweis: Link zum Artikel, der zuerst in der Zeitschrift „Discover materials” bei Springer erschienen ist. DOI: 10.1007/s43939-022-00028-0
  • Beschreibung: A new paradigm of electronic devices with bio-inspired features is aiming to mimic the brain’s fundamental mechanisms to achieve recognition of very complex patterns and more efficient computational tasks. Networks of electropolymerized dendritic fibers are attracting much interest because of their ability to achieve advanced learning capabilities, form neural networks, and emulate synaptic and plastic processes typical of human neurons. Despite their potential for braininspired computation, the roles of the single parameters associated with the growth of the fiber are still unclear, and the intrinsic randomness governing the growth of the dendrites prevents the development of devices with stable and reproducible properties. In this manuscript, we provide a systematic study on the physical parameters influencing the growth, defining cause-effect relationships for direction, symmetry, thickness, and branching of the fibers. We build an electrochemical model of the phenomenon and we validate it in silico using Montecarlo simulations. This work shows the possibility of designing dendritic polymer fibers with controllable physical properties, providing a tool to engineer polymeric networks with desired neuromorphic features.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)