• Medientyp: E-Artikel
  • Titel: The hnRNPs F and H2 bind to similar sequences to influence gene expression
  • Beteiligte: Alkan, Serkan A.; Martincic, Kathleen; Milcarek, Christine
  • Erschienen: Portland Press Ltd., 2006
  • Erschienen in: Biochemical Journal
  • Sprache: Englisch
  • DOI: 10.1042/bj20050538
  • ISSN: 0264-6021; 1470-8728
  • Schlagwörter: Cell Biology ; Molecular Biology ; Biochemistry
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The hnRNPs (heterogeneous nuclear ribonucleoproteins) F and H2 share a similar protein structure. Both have been implicated as regulating polyadenylation, but hnRNP H2 had a positive effect, whereas hnRNP F acted negatively. We therefore carried out side-by-side comparisons of their RNA-binding and in vivo actions. The binding of the CstF2 (64 kDa cleavage stimulatory factor) to SV40 (simian virus 40) late pre-mRNA substrates containing a downstream GRS (guanine-rich sequence) was reduced by hnRNP F, but not by hnRNP H2, in a UV-cross-linking assay. Point mutations of the 14-nt GRS influenced the binding of purified hnRNP F or H2 in parallel. Co-operative binding of the individual proteins to RNA was lost with mutations of the GRS in the G1−5 or G12−14 regions; both regions seem to be necessary for optimal interactions. Using a reporter green fluorescent protein assay with the GRS inserted downstream of the poly(A) (polyadenine) signal, expression in vivo was diminished by a mutant G1−5 sequence which decreased binding of both hnRNPs (SAA20) and was enhanced by a 12–14-nt mutant that showed enhanced hnRNP F or H2 binding (SAA10). Using small interfering RNA, down-regulation of hnRNP H2 levels diminished reporter expression, confirming that hnRNP H2 confers a positive influence; in contrast, decreasing hnRNP F levels had a negligible influence on reporter expression with the intact GRS. A pronounced diminution in reporter expression was seen with the SAA20 mutant for both. Thus the relative levels of hnRNP F and H2 in cells, as well as the target sequences in the downstream GRS on pre-mRNA, influence gene expression.</jats:p>
  • Zugangsstatus: Freier Zugang