Beschreibung:
We present an analytical formula to achieve numerical simulations of Kelvin force microscopy (KFM) signals from static force fields, which can be employed to describe amplitude-modulation or frequency-modulation KFM, as well as simultaneous topography and KFM modes for which the tip probe exhibits a nonzero oscillation during KFM imaging. This model is shown to account for side-capacitance and nonlinear effects taking place in KFM experiments, and can therefore be used conveniently to extract quantitative information from KFM experiments at the nanoscale.