• Medientyp: E-Artikel
  • Titel: Bulk- and layer-heterojunction phototransistors based on poly [2-methoxy-5-(2′-ethylhexyloxy-p-phenylenevinylene)] and PbS quantum dot hybrids
  • Beteiligte: Song, Xiaoxian; Zhang, Yating; Wang, Ran; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Wang, Haiyan; Jin, Lufan; Dai, Haitao; Ding, Xin; Zhang, Guizhong; Yao, Jianquan
  • Erschienen: AIP Publishing, 2015
  • Erschienen in: Applied Physics Letters
  • Sprache: Englisch
  • DOI: 10.1063/1.4922917
  • ISSN: 0003-6951; 1077-3118
  • Schlagwörter: Physics and Astronomy (miscellaneous)
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The responsivity (R) of a thin film photodetector is proportional to the product of its photo-induced carrier density (n) and mobility (μ). However, when choosing between layer heterojunction (LH) and bulk heterojunction (BH) field-effect phototransistors (FEpTs), it is still unclear which of the two device structures is more conducive to photodetection. A comparison study is performed on the two structures based on polymer and PbS quantum dot hybrids. Both devices exhibit ambipolar behavior, with μE ≈ μH = 3.7 cm2 V−1 s−1 for BH-FEpTs and μH = 36 cm2 V−1 s−1 and μE = 52 cm2 V−1 s−1 for LH-FEpTs. Because of the improvements in μ and the channel order degree (α), the responsivity of LH-FEpTs is as high as 101 A/W, which is as much as two orders of magnitude higher than that of BH-FEpTs (10−1A/W) under the same conditions. Although the large area of the BH improves both the exciton separation degree (β) and n in the BH-FEpT, the lack of an effective transport mechanism becomes the main constraint on high device responsivity. Therefore, LH-FEpTs are better candidates for use as photo detectors, and a “three-high” principle of high α, β, and μ is found to be required for high responsivity.</jats:p> <jats:p>At the request of the authors, this article is being retracted effective 23 February 2017.</jats:p>