• Medientyp: E-Artikel
  • Titel: Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration
  • Beteiligte: Karakatsanis, Nicolas A; Nehmeh, Mohammad H; Conti, Maurizio; Bal, Girish; González, Antonio J; Nehmeh, Sadek A
  • Erschienen: IOP Publishing, 2022
  • Erschienen in: Physics in Medicine & Biology
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1088/1361-6560/ac6aa1
  • ISSN: 0031-9155; 1361-6560
  • Schlagwörter: Radiology, Nuclear Medicine and imaging ; Radiological and Ultrasound Technology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title> <jats:p> <jats:italic>Objective.</jats:italic> Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph Vision<jats:sup>TM</jats:sup> PET/CT scanner. <jats:italic>Approach.</jats:italic> Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 × 5 Lutetium Oxyorthosilicate crystals (3.2 × 3.2 × 20 mm<jats:sup>3</jats:sup>). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all mini-blocks interleaved with gaps of 16 mm (transaxial) × 16 mm (axial) width in checkerboard pattern. For sparse configurations, a ‘limited’ continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012. <jats:italic>Main Results.</jats:italic> All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (<jats:italic>p</jats:italic>-value &gt; 0.05). Compared to Vision, SBR and SCB %CRs were similar (<jats:italic>p</jats:italic>-values &gt; 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (<jats:italic>p</jats:italic>-values &lt; 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq<jats:sup>−1</jats:sup>, NECRs of 311 kcps @35 kBq cc<jats:sup>−1</jats:sup>, 266 kcps @25.8 kBq cc<jats:sup>−1</jats:sup>, and 260 kcps @27.8 kBq cc<jats:sup>−1</jats:sup>, and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (<jats:italic>p</jats:italic>-value &gt; 0.05), yet, up to 1.5 mm worse than Vision (<jats:italic>p</jats:italic>-values &lt; 0.05). <jats:italic>Significance.</jats:italic> The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.</jats:p>