• Medientyp: E-Artikel
  • Titel: Cu x S thin films for printed memory cells and temperature sensors
  • Beteiligte: Jehn, Johannes; Kaiser, Michael; Eulenkamp, Constanze; Moosheimer, Ulrich; Ruediger, Andreas; Schindler, Christina
  • Erschienen: IOP Publishing, 2022
  • Erschienen in: Flexible and Printed Electronics
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1088/2058-8585/ac6783
  • ISSN: 2058-8585
  • Schlagwörter: Electrical and Electronic Engineering ; Electronic, Optical and Magnetic Materials
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title> <jats:p>Printed electronics require a multitude of various inks for different applications which leads to compatibility issues for their integration. We present a procedure to deposit a thin layer of Cu<jats:sub> <jats:italic>x</jats:italic> </jats:sub>S via inkjet printing of Na<jats:sub>2</jats:sub>S<jats:inline-formula> <jats:tex-math><?CDATA $_\mathrm{aq}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi /> <mml:mrow> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">q</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> on a thermally grown or inkjet-printed Cu surface that provides applications in electrochemical metallization memory cells (ECMs) or temperature sensors. The nanosized transformation from Cu to Cu<jats:sub> <jats:italic>x</jats:italic> </jats:sub>S is investigated via confocal microscopy, scanning electron microscopy (SEM), as well as energy-dispersive x-ray spectroscopy (EDX). We analyze individual responses from the sensor and memory and evaluate their respective potential in printed electronics. The negative temperature coefficient of the semiconducting Cu<jats:sub> <jats:italic>x</jats:italic> </jats:sub>S is determined to be <jats:inline-formula> <jats:tex-math><?CDATA $\beta_{25,80} = (656\pm5)$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>β</mml:mi> <mml:mrow> <mml:mn>25</mml:mn> <mml:mo>,</mml:mo> <mml:mn>80</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>656</mml:mn> <mml:mo>±</mml:mo> <mml:mn>5</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> K. Resistive switching is observed for a current compliance between 0.1 and 1000 <jats:italic>µ</jats:italic>A, with a resistance ratio R<jats:inline-formula> <jats:tex-math><?CDATA $_\mathrm{OFF}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi> </mml:mi> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> <mml:mi mathvariant="normal">F</mml:mi> <mml:mi mathvariant="normal">F</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>/R<jats:inline-formula> <jats:tex-math><?CDATA $_\mathrm{ON}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi /> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> <mml:mi mathvariant="normal">N</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fpeac6783ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> up to 10<jats:sup>5</jats:sup>. The use of the same inks and processes for the memory and sensor components paves the way for new and customized designs for smart logistics applications where temperature monitoring is required.</jats:p>