• Medientyp: E-Artikel
  • Titel: Suslin homology via cycles with modulus and applications
  • Beteiligte: Binda, Federico; Krishna, Amalendu
  • Erschienen: American Mathematical Society (AMS), 2022
  • Erschienen in: Transactions of the American Mathematical Society (2022)
  • Sprache: Englisch
  • DOI: 10.1090/tran/8815
  • ISSN: 0002-9947; 1088-6850
  • Schlagwörter: Applied Mathematics ; General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: We show that for a smooth projective variety X X over a field k k and a reduced effective Cartier divisor D ⊂ X D \subset X , the Chow group of 0-cycles with modulus C H 0 ( X | D ) CH_0(X|D) coincides with the Suslin homology H 0 S ( X ∖ D ) H^S_0(X \setminus D) under some necessary conditions on k k and D D . We derive several consequences, and we answer to a question of Barbieri-Viale and Kahn.