Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Uniform rank gradient, cost, and local-global convergence
Beteiligte:
Abért, Miklós;
Tóth, László
Erschienen:
American Mathematical Society (AMS), 2020
Erschienen in:
Transactions of the American Mathematical Society, 373 (2020) 4, Seite 2311-2329
Sprache:
Englisch
DOI:
10.1090/tran/8008
ISSN:
0002-9947;
1088-6850
Entstehung:
Anmerkungen:
Beschreibung:
We analyze the rank gradient of finitely generated groups with respect to sequences of subgroups of finite index that do not necessarily form a chain, by connecting it to the cost of p.m.p. (probability measure preserving) actions. We generalize several results that were only known for chains before. The connection is made by the notion of local-global convergence.
In particular, we show that for a finitely generated group Γ \Gamma with fixed price c c , every Farber sequence has rank gradient c − 1 c-1 . By adapting Lackenby’s trichotomy theorem to this setting, we also show that in a finitely presented amenable group, every sequence of subgroups with index tending to infinity has vanishing rank gradient.