• Medientyp: E-Artikel
  • Titel: The PEPSI exoplanet transit survey (PETS) I: investigating the presence of a silicate atmosphere on the super-earth 55 Cnc e
  • Beteiligte: Keles, Engin; Mallonn, Matthias; Kitzmann, Daniel; Poppenhaeger, Katja; Hoeijmakers, H Jens; Ilyin, Ilya; Alexoudi, Xanthippi; Carroll, Thorsten A; Alvarado-Gomez, Julian; Ketzer, Laura; Bonomo, Aldo S; Borsa, Francesco; Gaudi, B Scott; Henning, Thomas; Malavolta, Luca; Molaverdikhani, Karan; Nascimbeni, Valerio; Patience, Jennifer; Pino, Lorenzo; Scandariato, Gaetano; Schlawin, Everett; Shkolnik, Evgenya; Sicilia, Daniela; Sozzetti, Alessandro; [...]
  • Erschienen: Oxford University Press (OUP), 2022
  • Erschienen in: Monthly Notices of the Royal Astronomical Society
  • Sprache: Englisch
  • DOI: 10.1093/mnras/stac810
  • ISSN: 0035-8711; 1365-2966
  • Schlagwörter: Space and Planetary Science ; Astronomy and Astrophysics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>ABSTRACT</jats:title> <jats:p>The study of exoplanets and especially their atmospheres can reveal key insights on their evolution by identifying specific atmospheric species. For such atmospheric investigations, high-resolution transmission spectroscopy has shown great success, especially for Jupiter-type planets. Towards the atmospheric characterization of smaller planets, the super-Earth exoplanet 55 Cnc e is one of the most promising terrestrial exoplanets studied to date. Here, we present a high-resolution spectroscopic transit observation of this planet, acquired with the PEPSI instrument at the Large Binocular Telescope. Assuming the presence of Earth-like crust species on the surface of 55 Cnc e, from which a possible silicate-vapor atmosphere could have originated, we search in its transmission spectrum for absorption of various atomic and ionized species such as Fe , Fe +, Ca , Ca +, Mg, and K , among others. Not finding absorption for any of the investigated species, we are able to set absorption limits with a median value of 1.9 × RP. In conclusion, we do not find evidence of a widely extended silicate envelope on this super-Earth reaching several planetary radii.</jats:p>
  • Zugangsstatus: Freier Zugang