• Medientyp: E-Artikel
  • Titel: Unification of the Multiple Forms of van 't Hoff’s Law into One General Form
  • Beteiligte: Kuang, Serena Y.; Walter, Stefan; Yang, Xiaoqi; Li, Xiaonan
  • Erschienen: Wiley, 2022
  • Erschienen in: The FASEB Journal
  • Sprache: Englisch
  • DOI: 10.1096/fasebj.2022.36.s1.r3763
  • ISSN: 0892-6638; 1530-6860
  • Schlagwörter: Genetics ; Molecular Biology ; Biochemistry ; Biotechnology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:sec><jats:title>Introduction</jats:title><jats:p>The first Nobel Prize in Chemistry was awarded to Jacobus Henricus van 't Hoff in 1901 for his discoveries of the laws of chemical dynamics and osmotic pressure (<jats:bold>π</jats:bold>) in solutions. The original form of van 't Hoff’s law illustrates the relationship between <jats:bold>π</jats:bold> and the molar concentration (C) of a solution (S) facing a membrane (m) that separates the S and water compartments and is only permeable to water: <jats:bold>π</jats:bold> = C·RT, where R is the gas constant and T is the absolute temperature. However, in reality, both biological and artificial membranes can be extremely complex, so that facing different m, the resulting fractions of the impermeant solute particles (imp‐SP) contributing to <jats:bold>π</jats:bold>is different. The composition of the total solute particles (TSP that includes imp‐SP and permeant SP (p‐SP)) in S and their interactions may also be complex. For these reasons, multiple forms of van 't Hoff’s law have been developed over time to adapt to the different levels of complexity of solutions and/or membranes. In our previous works, we have done the following: 1) Defined the osmosis setting above as a <jats:italic>simple</jats:italic> osmosis system (S‐m‐H<jats:sub>2</jats:sub>O) and the setting of S<jats:sub>1</jats:sub>‐m‐S<jats:sub>2</jats:sub> as a <jats:italic>composite</jats:italic> osmosis system that can be deconstructed into two mirrored <jats:italic>simple</jats:italic> osmosis systems: S<jats:sub>1</jats:sub>‐m‐H<jats:sub>2</jats:sub>O and H<jats:sub>2</jats:sub>O‐m‐S<jats:sub>2</jats:sub><jats:sup>1, 2</jats:sup>. 2) Addressed the many problems in the current definitions of osmolarity (osmotic concentration, OC) and tonicity<jats:sup>1‐6</jats:sup>. 3) Reasoned out what real osmolarity is: the <jats:bold>osmotic concentration</jats:bold> (<jats:bold>OC</jats:bold>, the concentration of the imp‐SP resulting from the interaction between the composition of S and m) in S‐m‐H<jats:sub>2</jats:sub>O<jats:sup>1</jats:sup>. <jats:bold>OC</jats:bold> in boldface is differentiated from OC in regular face. <jats:bold>OC</jats:bold> is a m‐dependent variable during osmosis whose initial value before osmosis occurs (i.e,, time = 0) is <jats:bold>OC<jats:sub>0</jats:sub></jats:bold>, a constant of practical use. 4) Proved the correctness and effectiveness of <jats:bold>OC<jats:sub>0</jats:sub></jats:bold> in eliminating all the problems we addressed with the current definitions of osmolarity and tonicity<jats:sup>1‐6</jats:sup>. Moreover, by applying <jats:bold>OC<jats:sub>0</jats:sub></jats:bold> to van 't Hoff’s law, the multiple forms of the law can be unified into one general form. This presentation demonstrates 1) how this unification occurs; 2) how the unified form can be applied to a <jats:italic>composite</jats:italic> S<jats:sub>1</jats:sub>‐m‐S<jats:sub>2</jats:sub>.</jats:p></jats:sec><jats:sec><jats:title>Method</jats:title><jats:p>Logical reasoning</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>1. <jats:italic>Multiple forms of</jats:italic><jats:italic>van 't</jats:italic> <jats:italic>law and their unification</jats:italic></jats:p><jats:p>Table 1 shows the unification of the multiple forms of the law into one general form: π = <jats:bold>OC<jats:sub>0</jats:sub></jats:bold>·RT.</jats:p><jats:p>2. <jats:italic>Applying the unified form of</jats:italic><jats:italic>van 't</jats:italic><jats:italic>Hoff’s</jats:italic> <jats:italic>law to a composite osmosis system (S<jats:sub>1</jats:sub>‐m‐S<jats:sub>2</jats:sub>)</jats:italic></jats:p><jats:p>Figure. 1 illustrates the application of the unified form of the law in S<jats:sub>1</jats:sub>‐m‐S<jats:sub>2</jats:sub>: ∆<jats:bold>π</jats:bold> = ∆<jats:bold>OC<jats:sub>0</jats:sub>·</jats:bold>RT.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The unification of the multiple forms of van 't Hoff’s law using <jats:bold>OC<jats:sub>0</jats:sub></jats:bold> into a general form (<jats:bold>π</jats:bold> = <jats:bold>OC<jats:sub>0</jats:sub>·</jats:bold>RT) is a significant theoretical development of the law. The original form of the law is a special case of the general form.</jats:p></jats:sec><jats:sec><jats:title>References</jats:title><jats:p>1. Kuang et al., The Concept of Osmolarity: Problems and Resolutions. <jats:italic>The FASEB Journal</jats:italic>, 2020, 34(S1).</jats:p><jats:p>2. Kuang et al., The Concept of Osmotic Pressure: Two Common Misunderstandings and Resolutions. <jats:italic>The FASEB Journal</jats:italic>, 2021, 35(S1).</jats:p><jats:p>3. Kuang et al., The Problems with the Concepts of Osmole and Osmotically Active Particles. <jats:italic>The FASEB Journal</jats:italic>, 2020, 34(S1).</jats:p><jats:p>4. Kuang et al., The Concept of Tonicity: Problems and Resolutions. <jats:italic>The FASEB Journal</jats:italic>, 2020 34(S1).</jats:p><jats:p>5. Kuang et al., A Resolution for the Inconsistency in the Definitions of Tonicity [Abstract], submitted to EB2022.</jats:p><jats:p>6. Kuang et al., Resolutions to the Problems Caused by Introducing both Osmolarity and Effective Osmolarity [Abstract], submitted to EB2022.</jats:p></jats:sec>