Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Analysing brain networks in population neuroscience: a case for the Bayesian philosophy
Beteiligte:
Bzdok, Danilo;
Floris, Dorothea L.;
Marquand, Andre F.
Erschienen:
The Royal Society, 2020
Erschienen in:
Philosophical Transactions of the Royal Society B: Biological Sciences, 375 (2020) 1796, Seite 20190661
Sprache:
Englisch
DOI:
10.1098/rstb.2019.0661
ISSN:
0962-8436;
1471-2970
Entstehung:
Anmerkungen:
Beschreibung:
Network connectivity fingerprints are among today's best choices to obtain a faithful sampling of an individual's brain and cognition. Widely available MRI scanners can provide rich information tapping into network recruitment and reconfiguration that now scales to hundreds and thousands of humans. Here, we contemplate the advantages of analysing such connectome profiles using Bayesian strategies. These analysis techniques afford full probability estimates of the studied network coupling phenomena, provide analytical machinery to separate epistemological uncertainty and biological variability in a coherent manner, usher us towards avenues to go beyond binary statements on existence versus non-existence of an effect, and afford credibility estimates around all model parameters at play which thus enable single-subject predictions with rigorous uncertainty intervals. We illustrate the brittle boundary between healthy and diseased brain circuits by autism spectrum disorder as a recurring theme where, we argue, network-based approaches in neuroscience will require careful probabilistic answers. This article is part of the theme issue ‘Unifying the essential concepts of biological networks: biological insights and philosophical foundations’.