• Medientyp: E-Artikel
  • Titel: All‐electron basis sets for heavy elements
  • Beteiligte: Pantazis, Dimitrios A.; Neese, Frank
  • Erschienen: Wiley, 2014
  • Erschienen in: WIREs Computational Molecular Science
  • Sprache: Englisch
  • DOI: 10.1002/wcms.1177
  • ISSN: 1759-0876; 1759-0884
  • Schlagwörter: Materials Chemistry ; Computational Mathematics ; Physical and Theoretical Chemistry ; Computer Science Applications ; Biochemistry
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>All‐electron (<jats:styled-content style="fixed-case">AE</jats:styled-content>) calculations for chemical systems containing atoms of elements beyond krypton are becoming increasingly accessible and common in many fields of computational molecular science. The type, the size, and the internal construction of <jats:styled-content style="fixed-case">AE</jats:styled-content> basis sets for heavy elements depend critically on the level of quantum chemical theory and, most importantly, on the way relativistic effects are treated. For this reason, general‐purpose basis sets for heavy elements are rare; instead, different <jats:styled-content style="fixed-case">AE</jats:styled-content> basis sets have been developed that are adapted to the requirements and peculiarities of each (approximate) relativistic treatment. Ranging from fully relativistic four‐component approaches to more popular scalar relativistic approximations, today there exist complete families of <jats:styled-content style="fixed-case">AE</jats:styled-content> basis sets that can cover most research needs and can be employed in diverse applications for the proper description of various molecular and atomic properties including electronic structure, chemical reactivity, and a wide range of spectroscopic parameters.</jats:p><jats:p>This article is categorized under: <jats:list list-type="explicit-label"> <jats:list-item><jats:p>Electronic Structure Theory &gt; Ab Initio Electronic Structure Methods</jats:p></jats:list-item> </jats:list></jats:p>