• Medientyp: E-Artikel
  • Titel: A jack of all trades: the RNA‐binding protein vigilin
  • Beteiligte: Cheng, Matthew HK; Jansen, Ralf‐Peter
  • Erschienen: Wiley, 2017
  • Erschienen in: WIREs RNA
  • Sprache: Englisch
  • DOI: 10.1002/wrna.1448
  • ISSN: 1757-7012; 1757-7004
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins’ 14 or 15 <jats:styled-content style="fixed-case">hnRNP</jats:styled-content> K homology (<jats:styled-content style="fixed-case">KH</jats:styled-content>) domains, typically associated with <jats:styled-content style="fixed-case">RNA</jats:styled-content>‐binding. Vigilin is the largest <jats:styled-content style="fixed-case">RNA</jats:styled-content>‐binding protein (<jats:styled-content style="fixed-case">RBP</jats:styled-content>) in the <jats:styled-content style="fixed-case">KH</jats:styled-content> domain‐containing family and one of the largest <jats:styled-content style="fixed-case">RBP</jats:styled-content> known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 <jats:styled-content style="fixed-case">mRNAs</jats:styled-content> and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins’ different functions, focusing on maintenance of genome ploidy, heterochromatin formation, <jats:styled-content style="fixed-case">RNA</jats:styled-content> export, as well as regulation of translation, <jats:styled-content style="fixed-case">mRNA</jats:styled-content> transport, and <jats:styled-content style="fixed-case">mRNA</jats:styled-content> stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from <jats:styled-content style="fixed-case">tRNAs</jats:styled-content>, <jats:styled-content style="fixed-case">mRNAs</jats:styled-content>, ribosomes and ribosome‐associated proteins, to histone methyltransferases and <jats:styled-content style="fixed-case">DNA</jats:styled-content>‐dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C‐terminal <jats:styled-content style="fixed-case">KH</jats:styled-content> domains of the protein, <jats:styled-content style="fixed-case">KH13</jats:styled-content> and <jats:styled-content style="fixed-case">KH14</jats:styled-content>, represent the main <jats:styled-content style="fixed-case">mRNA</jats:styled-content>‐binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. <jats:italic>WIREs RNA</jats:italic> 2017, 8:e1448. doi: 10.1002/wrna.1448</jats:p><jats:p>This article is categorized under: <jats:list list-type="explicit-label"> <jats:list-item><jats:p>RNA Interactions with Proteins and Other Molecules &gt; Protein–RNA Recognition</jats:p></jats:list-item> <jats:list-item><jats:p>RNA Interactions with Proteins and Other Molecules &gt; Protein–RNA Interactions: Functional Implications</jats:p></jats:list-item> <jats:list-item><jats:p>Translation &gt; Translation Regulation</jats:p></jats:list-item> </jats:list></jats:p>