• Medientyp: E-Artikel
  • Titel: Photocurable Printed Piezocapacitive Pressure Sensor Based on an Acrylic Resin Modified with Polyaniline and Lignin
  • Beteiligte: Arias‐Ferreiro, Goretti; Ares‐Pernas, Ana; Lasagabáster‐Latorre, Aurora; Dopico‐García, M. Sonia; Ligero, Pablo; Pereira, N.; Costa, P.; Lanceros‐Mendez, S.; Abad, María‐José
  • Erschienen: Wiley, 2022
  • Erschienen in: Advanced Materials Technologies, 7 (2022) 8
  • Sprache: Englisch
  • DOI: 10.1002/admt.202101503
  • ISSN: 2365-709X
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractThe design of suitable materials for the manufacture of pressure sensors with high sensitivity and flexibility in wearable electronics is still a challenge. In this study, a flexible and portable pressure sensor is developed based on a photopolymeric formulation of polyaniline (PANI)/Lignin/acrylate. The amount of photoinitiator and the presence of lignin within the filler are investigated to obtain the best printability and capacitive response. Low PANI contents drastically increase the dielectric constant and 4 wt% photoinitiator improves the signal and sensitivity. A sensitivity of 0.012 kPa–1 is achieved in a linear range (0–10 kPa) with only 3.5 wt% PANI. Lignin improves both the dispersion of the filler within the matrix and the printability of the resin, due to lower absorptivity at the UV wavelength of the 3D printer. Thus, the PANI‐Lignin filler is selected for the fabrication of a piezocapacitive prototype transducer. The pressure transducer demonstrate its practical application by responding to a human footfall and transmitting its corresponding electrical signal. This study shows the enhanced properties of lignin modified PANI acrylate composites. Based on lignin, an abundant natural waste, a sustainable photocurable cost‐effective polymer is proposed for the fabrication of printable, wearable electronics.