• Medientyp: E-Artikel
  • Titel: Tandem Electro‐Thermo‐Catalysis for the Oxidative Aminocarbonylation of Arylboronic Acids to Amides from CO2 and Water
  • Beteiligte: Mei, Guoliang; Lu, Yanze; Yang, Xiaoju; Chen, Sanxia; Yang, Xuan; Yang, Li‐Ming; Tang, Conghui; Sun, Yujie; Xia, Bao Yu; You, Bo
  • Erschienen: Wiley, 2024
  • Erschienen in: Angewandte Chemie International Edition
  • Sprache: Englisch
  • DOI: 10.1002/anie.202314708
  • ISSN: 1433-7851; 1521-3773
  • Schlagwörter: General Chemistry ; Catalysis
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Direct CO<jats:sub>2</jats:sub> electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C<jats:sub>1</jats:sub>/C<jats:sub>2</jats:sub> compounds, and traditionally, the anodic O<jats:sub>2</jats:sub> byproduct is not utilized. We herein report a tandem electrothermo‐catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O<jats:sub>2</jats:sub>) products during overall CO<jats:sub>2</jats:sub> electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)‐catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)‐incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O<jats:sub>2</jats:sub> with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface‐enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO<jats:sub>2</jats:sub> hydrogenation/*CO desorption for accelerated CO<jats:sub>2</jats:sub>‐to‐CO conversion, and O<jats:sub>2</jats:sub> inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo‐catalytic strategy for economically attractive CO<jats:sub>2</jats:sub> conversion and amide synthesis, representing a new avenue to explore the full potential of CO<jats:sub>2</jats:sub> utilization.</jats:p>