• Medientyp: E-Artikel
  • Titel: Optimization of a Liquid Crystal‐based Sensory Platform for Monitoring Enzymatic Glucose Oxidation
  • Beteiligte: Wei, Yibin; Jang, Chang‐Hyun
  • Erschienen: Wiley, 2016
  • Erschienen in: Bulletin of the Korean Chemical Society
  • Sprache: Englisch
  • DOI: 10.1002/bkcs.10736
  • ISSN: 1229-5949
  • Schlagwörter: General Chemistry
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (<jats:styled-content style="fixed-case">LC</jats:styled-content>) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the <jats:styled-content style="fixed-case">pH</jats:styled-content> of aqueous systems that can be monitored by <jats:styled-content style="fixed-case">pH</jats:styled-content>‐sensitive <jats:styled-content style="fixed-case">LC</jats:styled-content> materials. Of the existing <jats:styled-content style="fixed-case">pH</jats:styled-content>‐sensitive <jats:styled-content style="fixed-case">LC</jats:styled-content> materials, dodecanoic acid‐doped 4‐cyano‐4′‐pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 <jats:styled-content style="fixed-case">pH</jats:styled-content> requirement of human blood. Moreover, the orientational alignment of capillary‐confined <jats:styled-content style="fixed-case">pH</jats:styled-content>‐responsive <jats:styled-content style="fixed-case">LCs</jats:styled-content> can be disrupted at the aqueous/<jats:styled-content style="fixed-case">LC</jats:styled-content> interface following a slight decrease in the critical <jats:styled-content style="fixed-case">pH</jats:styled-content> of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable <jats:styled-content style="fixed-case">LC</jats:styled-content> droplet patterns generated by the cylindrical confinement system, the functionalized <jats:styled-content style="fixed-case">LCs</jats:styled-content> can selectively detect glucose at concentrations as low as 0.1 <jats:styled-content style="fixed-case">pM</jats:styled-content>. This study further advances the previously reported <jats:styled-content style="fixed-case">LC</jats:styled-content>‐based glucose monitoring systems by reducing production costs and instituting a smarter <jats:styled-content style="fixed-case">LC</jats:styled-content> sensory design. This improved system shows potential for the use in clinical bioassay applications.</jats:p>