• Medientyp: E-Artikel
  • Titel: The Monod and a biphasic biodegradation kinetics of diesel hydrocarbons by a biofilm of Pseudomonas and the potential electromotive force involved
  • Beteiligte: Acuna‐Askar, Karim; Pecina‐Chacon, David Eduardo; Mas‐Trevino, Marcela; Tijerina‐Menchaca, Rolando; Rodriguez‐Perez, Elba Guadalupe; Luna‐Olvera, Hugo Alberto; Ascacio‐Martinez, Jorge Angel; Barrera‐Saldana, Hugo Alberto; Alfaro‐Barbosa, Juan Manuel
  • Erschienen: Wiley, 2015
  • Erschienen in: Journal of Chemical Technology & Biotechnology
  • Sprache: Englisch
  • DOI: 10.1002/jctb.4424
  • ISSN: 0268-2575; 1097-4660
  • Schlagwörter: Inorganic Chemistry ; Organic Chemistry ; Pollution ; Waste Management and Disposal ; Fuel Technology ; Renewable Energy, Sustainability and the Environment ; General Chemical Engineering ; Biotechnology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:sec><jats:title>BACKGROUND</jats:title><jats:p>Two kinetic models for diesel degradation in a continuous‐flow reactor at a retention time of 1.5 h were compared. One model included the Monod equation and the other, a biphasic model, did not involve Monod parameters. The experiment included two <jats:italic>Pseudomonas</jats:italic> species. A thermodynamic study on the nitrate‐reducing degradation of diesel was performed in addition to a <jats:styled-content style="fixed-case">BOD<jats:sub>5</jats:sub></jats:styled-content> /<jats:styled-content style="fixed-case">COD</jats:styled-content> ratio to evaluate the biodegradability of both the diesel components and their residual concentrations.</jats:p></jats:sec><jats:sec><jats:title>RESULTS</jats:title><jats:p>The Monod model revealed that both μ<jats:sub>max,h</jats:sub> and <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jctb4424-math-0001.png" xlink:title="urn:x-wiley:02682575:media:jctb4424:jctb4424-math-0001" />for the <jats:styled-content style="fixed-case">C<jats:sub>10</jats:sub>–C<jats:sub>18</jats:sub></jats:styled-content> chains were 2.5‐fold and 11‐fold, respectively, lower than those of chains <jats:styled-content style="fixed-case">C<jats:sub>20</jats:sub>–C<jats:sub>22</jats:sub></jats:styled-content>. The biphasic model failed to detect the influent concentration range at which the biofilm slowed down processing the substrates. The shifts of the influent‐to‐effluent <jats:styled-content style="fixed-case">BOD<jats:sub>5</jats:sub></jats:styled-content>/<jats:styled-content style="fixed-case">COD</jats:styled-content> ratios from 0.67 to 0.80 and from 0.80 to 0.95, for the lowest and highest substrate concentrations, respectively, confirmed that residuals in the effluent can be degraded. Stoichiometric calculations for <jats:styled-content style="fixed-case">C<jats:sub>10</jats:sub>–C<jats:sub>22</jats:sub></jats:styled-content> revealed theoretical spontaneous release of Gibbs free energies from –6.89 to –70.27 <jats:styled-content style="fixed-case">kJ</jats:styled-content>, and electromotive forces from 4.4 to 45.51 <jats:styled-content style="fixed-case">mV</jats:styled-content> for both the lowest and highest diesel concentrations, respectively.</jats:p></jats:sec><jats:sec><jats:title>CONCLUSION</jats:title><jats:p>The influent diesel concentration interval of 1008–1344 mg L<jats:sup>−1</jats:sup> was the range over which the maximum utilization rates of chains <jats:styled-content style="fixed-case">C<jats:sub>10</jats:sub>–C<jats:sub>22</jats:sub></jats:styled-content> decreased from 1.12 to 0.57 vss<jats:sup>−1</jats:sup> due to the inhibitory action of chains <jats:styled-content style="fixed-case">C<jats:sub>10</jats:sub>–C<jats:sub>18</jats:sub></jats:styled-content> (<jats:italic>P</jats:italic>&lt;0.05). Following the degradation of diesel, the organic residuals left in the effluent can be easily assimilated. The nitrate‐reducing degradation was able to produce an electromotive force spontaneously. © 2014 Society of Chemical Industry</jats:p></jats:sec>