• Medientyp: E-Artikel
  • Titel: Higher ordermixed finite element approximation of subsurface water flow
  • Beteiligte: Bause, Markus
  • Erschienen: Wiley, 2007
  • Erschienen in: PAMM
  • Sprache: Englisch
  • DOI: 10.1002/pamm.200700198
  • ISSN: 1617-7061
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>This paper focuses on the reliable and efficient numerical approximation of subsurface water flows. The locally mass conservative <jats:bold>B</jats:bold>rezzi‐<jats:bold>D</jats:bold>ouglas‐<jats:bold>M</jats:bold>arini (<jats:bold>BDM</jats:bold><jats:sub>1</jats:sub>) mixed finite element method is considered and compared to a lowest order <jats:bold>R</jats:bold>aviart–<jats:bold>T</jats:bold>homas (<jats:bold>RT</jats:bold><jats:sub>0</jats:sub>) mixed finite element approach and a <jats:bold>M</jats:bold>ulti <jats:bold>P</jats:bold>oint <jats:bold>F</jats:bold>lux <jats:bold>A</jats:bold>pproximation. Appreciable advantage of the BDM<jats:sub>1</jats:sub> element is that it yields a formally second order accurate flux approximation whereas the RT<jats:sub>0</jats:sub> and MPFA approach are of first order accuracy only. The problem to be analyzed in this work is whether a superiority of the BDM<jats:sub>1</jats:sub> element can also be observed in reservoir simulation where discontinuous and full permeability tensors on non‐uniform grids arise and the fluxes lack the regularity that is assumed customarily in optimal order error analyses. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</jats:p>
  • Zugangsstatus: Freier Zugang