• Medientyp: E-Artikel
  • Titel: Lecture Notes in Computer Science: QSMA: A New Algorithm for Quantified Satisfiability Modulo Theory and Assignment
  • Beteiligte: Bonacina, Maria Paola; Graham-Lengrand, Stéphane; Vauthier, Christophe
  • Erschienen: Springer Nature Switzerland, 2023
  • Erschienen in: Lecture Notes in Computer Science (2023), Seite 78-95
  • Sprache: Englisch
  • DOI: 10.1007/978-3-031-38499-8_5
  • ISBN: 9783031384998; 9783031384981
  • ISSN: 0302-9743; 1611-3349
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractThis paper presents and proves totally correct a new algorithm, called$$\textsf{QSMA}$$QSMA, for the satisfiability of a quantified formula modulo a complete theory and an initial assignment. The optimized variant of$$\textsf{QSMA}$$QSMAimplemented in YicesQS is described and shown to preserve total correctness. A report on the performance of YicesQS at the 2022 SMT competition is included. YicesQS ran in the$$\textsf{LIA}$$LIA,$$\textsf{NIA}$$NIA,$$\textsf{LRA}$$LRA,$$\textsf{NRA}$$NRA, and$$\textsf{BV}$$BVcategories and ranked second for the “largest contribution” award (single queries). It was the only solver to solve all$$\textsf{LRA}$$LRAinstances, where it was about two orders of magnitude faster than the second best solver (Z3).