• Medientyp: E-Artikel
  • Titel: Robust Argumentation Machines: Argumentation-Based Probabilistic Causal Reasoning
  • Beteiligte: Bengel, Lars; Blümel, Lydia; Rienstra, Tjitze; Thimm, Matthias
  • Erschienen: Springer Nature Switzerland, 2024
  • Erschienen in: Robust Argumentation Machines (2024), Seite 221-236
  • Sprache: Englisch
  • DOI: 10.1007/978-3-031-63536-6_13
  • ISBN: 9783031635366; 9783031635359
  • ISSN: 0302-9743; 1611-3349
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractWe introduce an argumentation-based approach for conducting probabilistic causal reasoning. For that, we consider Pearl’s causal models where causal relations are modelled via structural equations and a probability distribution over background atoms. The probability that some causal statement holds is then computed by constructing a probabilistic argumentation framework and determining its extensions. This framework can then be used to generate argumentative explanations for the (non-)acceptance of the causal statement. Furthermore, we present an argumentation-based version of the twin network method for dealing with counterfactuals. Finally, we show that our approach yields the same results for causal and counterfactual queries as Pearl’s model.