• Medientyp: E-Artikel
  • Titel: Image-based phenomic prediction can provide valuable decision support in wheat breeding
  • Beteiligte: Roth, Lukas; Fossati, Dario; Krähenbühl, Patrick; Walter, Achim; Hund, Andreas
  • Erschienen: Springer Science and Business Media LLC, 2023
  • Erschienen in: Theoretical and Applied Genetics
  • Sprache: Englisch
  • DOI: 10.1007/s00122-023-04395-x
  • ISSN: 0040-5752; 1432-2242
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:sec> <jats:title>Key message</jats:title> <jats:p><jats:bold>Genotype-by-environment interactions of secondary traits based on high-throughput field phenotyping are less complex than those of target traits, allowing for a phenomic selection in unreplicated early generation trials.</jats:bold></jats:p> </jats:sec><jats:sec> <jats:title>Abstract</jats:title> <jats:p>Traditionally, breeders’ selection decisions in early generations are largely based on visual observations in the field. With the advent of affordable genome sequencing and high-throughput phenotyping technologies, enhancing breeders’ ratings with such information became attractive. In this research, it is hypothesized that G<jats:inline-formula><jats:alternatives><jats:tex-math>$$\times$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>E interactions of secondary traits (i.e., growth dynamics’ traits) are less complex than those of related target traits (e.g., yield). Thus, phenomic selection (PS) may allow selecting for genotypes with beneficial response-pattern in a defined population of environments. A set of 45 winter wheat varieties was grown at 5 year-sites and analyzed with linear and factor-analytic (FA) mixed models to estimate G<jats:inline-formula><jats:alternatives><jats:tex-math>$$\times$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>E interactions of secondary and target traits. The dynamic development of drone-derived plant height, leaf area and tiller density estimations was used to estimate the timing of key stages, quantities at defined time points and temperature dose–response curve parameters. Most of these secondary traits and grain protein content showed little G<jats:inline-formula><jats:alternatives><jats:tex-math>$$\times$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>E interactions. In contrast, the modeling of G<jats:inline-formula><jats:alternatives><jats:tex-math>$$\times$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>E for yield required a FA model with two factors. A trained PS model predicted overall yield performance, yield stability and grain protein content with correlations of 0.43, 0.30 and 0.34. While these accuracies are modest and do not outperform well-trained GS models, PS additionally provided insights into the physiological basis of target traits. An ideotype was identified that potentially avoids the negative pleiotropic effects between yield and protein content.</jats:p> </jats:sec>