• Medientyp: E-Artikel
  • Titel: On two mod p period maps: Ekedahl–Oort and fine Deligne–Lusztig stratifications
  • Beteiligte: Andreatta, Fabrizio
  • Erschienen: Springer Science and Business Media LLC, 2023
  • Erschienen in: Mathematische Annalen, 385 (2023) 1-2, Seite 1-40
  • Sprache: Englisch
  • DOI: 10.1007/s00208-021-02356-7
  • ISSN: 0025-5831; 1432-1807
  • Schlagwörter: General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractConsider a Shimura variety of Hodge type admitting a smooth integral model S at an odd prime $$p\ge 5$$ p ≥ 5 . Consider its perfectoid cover $$S^{\text {ad}}(p^\infty )$$ S ad ( p ∞ ) and the Hodge–Tate period map introduced by Caraiani and Scholze. We compare the pull-back to $$S^{\text {ad}}(p^\infty )$$ S ad ( p ∞ ) of the Ekedahl–Oort stratification on the mod p special fiber of a toroidal compactification of S and the pull back to $$S^\text {ad}(p^\infty )$$ S ad ( p ∞ ) of the fine Deligne–Lusztig stratification on the mod p special fiber of the flag variety which is the target of the Hodge–Tate period map. An application to the non-emptiness of Ekedhal–Oort strata is provided.