• Medientyp: E-Artikel
  • Titel: Gegenbauer and Other Planar Orthogonal Polynomials on an Ellipse in the Complex Plane
  • Beteiligte: Akemann, Gernot; Nagao, Taro; Parra, Iván; Vernizzi, Graziano
  • Erschienen: Springer Science and Business Media LLC, 2021
  • Erschienen in: Constructive Approximation, 53 (2021) 3, Seite 441-478
  • Sprache: Englisch
  • DOI: 10.1007/s00365-020-09515-0
  • ISSN: 1432-0940; 0176-4276
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>We show that several families of classical orthogonal polynomials on the real line are also orthogonal on the interior of an ellipse in the complex plane, subject to a weighted planar Lebesgue measure. In particular these include Gegenbauer polynomials <jats:inline-formula><jats:alternatives><jats:tex-math>$$C_n^{(1+\alpha )}(z)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha &gt;-1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> containing the Legendre polynomials <jats:inline-formula><jats:alternatives><jats:tex-math>$$P_n(z)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> and the subset <jats:inline-formula><jats:alternatives><jats:tex-math>$$P_n^{(\alpha +\frac{1}{2},\pm \frac{1}{2})}(z)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> <mml:mo>±</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> of the Jacobi polynomials. These polynomials provide an orthonormal basis and the corresponding weighted Bergman space forms a complete metric space. This leads to a certain family of Selberg integrals in the complex plane. We recover the known orthogonality of Chebyshev polynomials of the first up to fourth kind. The limit <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha \rightarrow \infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> leads back to the known Hermite polynomials orthogonal in the entire complex plane. When the ellipse degenerates to a circle we obtain the weight function and monomials known from the determinantal point process of the ensemble of truncated unitary random matrices.</jats:p>