• Medientyp: E-Artikel
  • Titel: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
  • Beteiligte: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; [...]
  • Erschienen: Springer Science and Business Media LLC, 2018
  • Erschienen in: Living Reviews in Relativity
  • Sprache: Englisch
  • DOI: 10.1007/s41114-018-0012-9
  • ISSN: 2367-3613; 1433-8351
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and <jats:inline-formula><jats:alternatives><jats:tex-math>$$90\%$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>90</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–<jats:inline-formula><jats:alternatives><jats:tex-math>$$20~\mathrm {deg}^2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>20</mml:mn> <mml:mspace /> <mml:msup> <mml:mrow> <mml:mi>deg</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> requires at least three detectors of sensitivity within a factor of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\sim 2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>∼</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.</jats:p>
  • Zugangsstatus: Freier Zugang