• Medientyp: E-Artikel
  • Titel: Arithmeticity of discrete subgroups
  • Beteiligte: BENOIST, YVES
  • Erschienen: Cambridge University Press (CUP), 2021
  • Erschienen in: Ergodic Theory and Dynamical Systems, 41 (2021) 9, Seite 2561-2590
  • Sprache: Englisch
  • DOI: 10.1017/etds.2020.81
  • ISSN: 1469-4417; 0143-3857
  • Schlagwörter: Applied Mathematics ; General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractThe topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group$\mathrm {SL}(d,{\mathbb {R}})$ and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.