Beschreibung:
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_{e}>0.25n_{c}$ when the laser amplitude is larger than a certain threshold. To satisfy the phase-matching conditions of frequency and wavenumber, the excited electrostatic mode has a constant frequency around half of the incident light frequency $\unicode[STIX]{x1D714}_{0}/2$ , which is no longer the eigenmode of electron plasma wave $\unicode[STIX]{x1D714}_{pe}$ . Both the scattered light and the electrostatic wave are trapped in plasma with their group velocities being zero. Super-hot electrons are produced by the non-eigen electrostatic wave. Our theoretical model is validated by particle-in-cell simulations. The SRS driven in this non-eigenmode regime is an important laser energy loss mechanism in the laser plasma interactions as long as the laser intensity is higher than $10^{15}~\text{W}/\text{cm}^{2}$ .