• Medientyp: E-Artikel
  • Titel: Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball
  • Beteiligte: Li, Songqi; Li, Wenpeng; Noack, Bernd R.
  • Erschienen: Cambridge University Press (CUP), 2022
  • Erschienen in: Journal of Fluid Mechanics
  • Sprache: Englisch
  • DOI: 10.1017/jfm.2022.908
  • ISSN: 0022-1120; 1469-7645
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>We propose the first machine-learned control-oriented flow estimation for multiple-input, multiple-output plants. The starting point is constant actuation with open-loop actuation commands leading to a database with simultaneously recorded actuation commands, sensor signals and flow fields. A key enabler is an estimator input vector comprising sensor signals and actuation commands. The mapping from the sensor signals and actuation commands to the flow fields is realized in an analytically simple, data-centric and general nonlinear approach. The analytically simple estimator generalizes linear stochastic estimation for actuation commands. The data-centric approach yields flow fields from estimator inputs by interpolating from the database – similar to Loiseau, Noack &amp; Brunton (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 844, 2018, pp. 459–490) for unforced flow. The interpolation is performed with<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022009089_inline1.png" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula>nearest neighbours (<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022009089_inline2.png" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula>NN). The general global nonlinear mapping from inputs to flow fields is obtained from a deep neural network (DNN) via an iterative training approach. The estimator comparison is performed for the fluidic pinball plant, which is a multiple-input, multiple-output wake control benchmark (Deng<jats:italic>et al.</jats:italic>,<jats:italic>J. Fluid Mech.</jats:italic>, vol. 884, 2020, A37) featuring rich dynamics under steady controls. We conclude that the machine learning methods clearly outperform the linear model. The performance of<jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112022009089_inline3.png" /><jats:tex-math>$k$</jats:tex-math></jats:alternatives></jats:inline-formula>NN and DNN estimators are comparable for periodic dynamics. Yet the DNN performs consistently better when the flow is chaotic. Moreover, a thorough comparison regarding the complexity, computational cost and prediction accuracy is presented to demonstrate the relative merits of each estimator. The proposed method can be generalized for closed-loop flow control plants.</jats:p>