• Medientyp: E-Artikel
  • Titel: Discrete Fourier multipliers and cylindrical boundary-value problems
  • Beteiligte: Denk, Robert; Nau, Tobias
  • Erschienen: Cambridge University Press (CUP), 2013
  • Erschienen in: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013) 6, Seite 1163-1183
  • Sprache: Englisch
  • DOI: 10.1017/s0308210511001454
  • ISSN: 0308-2105; 1473-7124
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: We consider operator-valued boundary-value problems in (0, 2π)n with periodic or, more generally, ν-periodic boundary conditions. Using the concept of discrete vector-valued Fourier multipliers, we give equivalent conditions for the unique solvability of the boundary-value problem. As an application, we study vector-valued parabolic initial boundary-value problems in cylindrical domains (0, 2π)n × V with ν-periodic boundary conditions in the cylindrical directions. We show that, under suitable assumptions on the coefficients, we obtain maximal Lq-regularity for such problems. For symmetric operators such as the Laplacian, related results for mixed Dirichlet-Neumann boundary conditions on (0, 2π)n × V are deduced.