• Medientyp: E-Artikel
  • Titel: Higher-level canonical subgroups for p-divisible groups
  • Beteiligte: Rabinoff, Joseph
  • Erschienen: Cambridge University Press (CUP), 2012
  • Erschienen in: Journal of the Institute of Mathematics of Jussieu, 11 (2012) 2, Seite 363-419
  • Sprache: Englisch
  • DOI: 10.1017/s1474748011000132
  • ISSN: 1474-7480; 1475-3030
  • Schlagwörter: General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractLet R be a complete rank-1 valuation ring of mixed characteristic (0, p), and let K be its field of fractions. A g-dimensional truncated Barsotti–Tate group G of level n over R is said to have a level-n canonical subgroup if there is a K-subgroup of G ⊗RK with geometric structure (Z/pnZ)g consisting of points ‘closest to zero’. We give a non-trivial condition on the Hasse invariant of G that guarantees the existence of the canonical subgroup, analogous to a result of Katz and Lubin for elliptic curves. The bound is independent of the height and dimension of G.