• Medientyp: E-Artikel
  • Titel: CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES
  • Beteiligte: Binda, Federico; Merici, Alberto
  • Erschienen: Cambridge University Press (CUP), 2023
  • Erschienen in: Journal of the Institute of Mathematics of Jussieu, 22 (2023) 1, Seite 335-381
  • Sprache: Englisch
  • DOI: 10.1017/s1474748021000256
  • ISSN: 1474-7480; 1475-3030
  • Schlagwörter: General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractThe goal of this article is to extend the work of Voevodsky and Morel on the homotopyt-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for$({\mathbf {P}}^1, \infty )$-local complexes of sheaves with log transfers. The homotopyt-structure on${\operatorname {\mathbf {logDM}^{eff}}}(k)$is proved to be compatible with Voevodsky’st-structure; that is, we show that the comparison functor$R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$ist-exact. The heart of the homotopyt-structure on${\operatorname {\mathbf {logDM}^{eff}}}(k)$is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.