Rhoden, Alyssa Rose;
Skjetne, Helle L.;
Henning, Wade G.;
Hurford, Terry A.;
Walsh, Kevin J.;
Stern, S. A.;
Olkin, C. B.;
Spencer, J. R.;
Weaver, H. A.;
Young, L. A.;
Ennico, K.
Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Charon: A Brief History of Tides
Beteiligte:
Rhoden, Alyssa Rose;
Skjetne, Helle L.;
Henning, Wade G.;
Hurford, Terry A.;
Walsh, Kevin J.;
Stern, S. A.;
Olkin, C. B.;
Spencer, J. R.;
Weaver, H. A.;
Young, L. A.;
Ennico, K.
Erschienen:
American Geophysical Union (AGU), 2020
Erschienen in:
Journal of Geophysical Research: Planets, 125 (2020) 7
Sprache:
Englisch
DOI:
10.1029/2020je006449
ISSN:
2169-9097;
2169-9100
Entstehung:
Anmerkungen:
Beschreibung:
AbstractIn 2015, the New Horizons spacecraft flew past Pluto and its moon Charon, providing the first clear look at Charon's surface. New Horizons images revealed an ancient surface, a large, intricate canyon system, and many fractures, among other geologic features. Here, we assess whether tidal stresses played a significant role in the formation of Charon's tensile fractures. Although presently in a circular orbit, most scenarios for Charon's orbital evolution include an eccentric orbit for some period of time and possibly an internal ocean. Past work has shown that these conditions could have generated stresses comparable in magnitude to other tidally fractured moons, such as Europa and Enceladus. However, we find no correlation between observed fracture orientations and those predicted to form due to eccentricity driven tidal stress. It, thus, seems more likely that Charon's orbit circularized before its ocean froze and that either tidal stresses alone were insufficient to fracture the surface or subsequent resurfacing removed these ancient fractures.