• Medientyp: E-Artikel
  • Titel: Cascaded emission of single photons from the biexciton in monolayered WSe2
  • Beteiligte: He, Yu-Ming; Iff, Oliver; Lundt, Nils; Baumann, Vasilij; Davanco, Marcelo; Srinivasan, Kartik; Höfling, Sven; Schneider, Christian
  • Erschienen: Springer Science and Business Media LLC, 2016
  • Erschienen in: Nature Communications
  • Sprache: Englisch
  • DOI: 10.1038/ncomms13409
  • ISSN: 2041-1723
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe<jats:sub>2</jats:sub>, sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe<jats:sub>2</jats:sub>, which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.</jats:p>
  • Zugangsstatus: Freier Zugang