• Medientyp: E-Artikel
  • Titel: Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity
  • Beteiligte: Chen, Yizhen; Li, Hongliang; Zhao, Wanghui; Zhang, Wenbo; Li, Jiawei; Li, Wei; Zheng, Xusheng; Yan, Wensheng; Zhang, Wenhua; Zhu, Junfa; Si, Rui; Zeng, Jie
  • Erschienen: Springer Science and Business Media LLC, 2019
  • Erschienen in: Nature Communications, 10 (2019) 1
  • Sprache: Englisch
  • DOI: 10.1038/s41467-019-09918-z
  • ISSN: 2041-1723
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>As diversified reaction paths exist over practical catalysts towards CO<jats:sub>2</jats:sub> hydrogenation, it is highly desiderated to precisely control the reaction path for developing efficient catalysts. Herein, we report that the ensemble of Pt single atoms coordinated with oxygen atoms in MIL-101 (Pt<jats:sub>1</jats:sub>@MIL) induces distinct reaction path to improve selective hydrogenation of CO<jats:sub>2</jats:sub> into methanol. Pt<jats:sub>1</jats:sub>@MIL achieves the turnover frequency number of 117 h<jats:sup>−1</jats:sup> in DMF under 32 bar at 150 °C, which is 5.6 times that of Pt<jats:sub>n</jats:sub>@MIL. Moreover, the selectivity for methanol is 90.3% over Pt<jats:sub>1</jats:sub>@MIL, much higher than that (13.3%) over Pt<jats:sub>n</jats:sub>@MIL with CO as the major product. According to mechanistic studies, CO<jats:sub>2</jats:sub> is hydrogenated into HCOO* as the intermediate for Pt<jats:sub>1</jats:sub>@MIL, whereas COOH* serves as the intermediate for Pt<jats:sub>n</jats:sub>@MIL. The unique reaction path over Pt<jats:sub>1</jats:sub>@MIL not only lowers the activation energy for the enhanced catalytic activity, but also contributes to the high selectivity for methanol.</jats:p>
  • Zugangsstatus: Freier Zugang