• Medientyp: E-Artikel
  • Titel: Structural complexity in ramp-compressed sodium to 480 GPa
  • Beteiligte: Polsin, Danae N.; Lazicki, Amy; Gong, Xuchen; Burns, Stephen J.; Coppari, Federica; Hansen, Linda E.; Henderson, Brian J.; Huff, Margaret F.; McMahon, Malcolm I.; Millot, Marius; Paul, Reetam; Smith, Raymond F.; Eggert, Jon H.; Collins, Gilbert W.; Rygg, J. Ryan
  • Erschienen: Springer Science and Business Media LLC, 2022
  • Erschienen in: Nature Communications
  • Sprache: Englisch
  • DOI: 10.1038/s41467-022-29813-4
  • ISSN: 2041-1723
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na<jats:sup>+</jats:sup> ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states.</jats:p>
  • Zugangsstatus: Freier Zugang