Erschienen:
Springer Science and Business Media LLC, 2022
Erschienen in:
Nature Communications, 13 (2022) 1
Sprache:
Englisch
DOI:
10.1038/s41467-022-34229-1
ISSN:
2041-1723
Entstehung:
Anmerkungen:
Beschreibung:
AbstractEarth’s hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global hydrological cycle. We identify four terrestrial moisture recycling hubs: the Amazon Basin, the Congo Rainforest, South Asia and the Indonesian Archipelago. Network motifs reveal contrasting functioning of these regions, where the Amazon strongly relies on directed connections (feed-forward loops) for moisture redistribution and the other hubs on reciprocal moisture connections (zero loops and neighboring loops). We conclude that Earth’s moisture recycling hubs are characterized by specific topologies shaping heterogeneous effects of land-use changes and climatic warming on precipitation patterns.